看板 ott
作者 ott (寶貝)
標題 Mersenne primes:
時間 2013年02月08日 Fri. PM 05:17:12

   
   
 


http://primes.utm.edu/mersenne/index.html



 

 Mersenne primes:

    History, Theorems and Lists




 
   
     
 
Our book "Prime Curios! The Dictionary of Prime Number Trivia" is now available on CreateSpace, Amazon, ....


Contents:



     
  1. Early History
     
  2. Perfect Numbers and a Few Theorems
     
  3. Table of Known Mersenne primes
     
  4. The Lucas-Lehmer Test and Recent History
     
  5. Conjectures and Unsolved Problems
     
  6. See also [url=../notes/faq/NextMersenne.html]Where is the next larger
          Mersenne prime?[/url] and [url=heuristic.html]Mersenne heuristics[/url]
     
  7. For remote pages on Mersennes see the Prime
        Links' Mersenne directory



Primes:
[ Home 
|| Largest
| Proving
| How Many?
| Mersenne
| Glossary
| Mailing List ]


1. Early History


Many early writers felt that the numbers of the form 2n-1 were
 prime for all primes n, but in 1536 Hudalricus Regius showed that
  211-1 = 2047 was not prime (it is 23.89).  By 1603
Pietro
 Cataldi had correctly verified that 217-1 and 219-1
  were both prime, but then incorrectly stated 2n-1 was also
  prime  for 23, 29, 31 and 37.  In 1640 Fermat
showed Cataldi was wrong about 23 and 37; then Euler
in 1738 showed Cataldi was also wrong about 29.  Sometime later Euler showed Cataldi's assertion
 about 31 was correct.

Enter French monk Marin
  Mersenne (1588-1648).  Mersenne stated in the preface to his Cogitata
  Physica-Mathematica
 (1644) that the numbers 2n-1 were
  prime for

n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 and 257 

and were composite for all other positive integers n < 257.  Mersenne's
(incorrect) conjecture fared only slightly better than Regius', but still got
his name attached to these numbers.
Definition: When 2n-1 is prime it is said
  to be a Mersenne prime.

It was obvious to Mersenne's peers that he could not have tested all of these
numbers (in fact he admitted as much), but they could not test them either. 
It was not until over 100 years later, in 1750, that Euler verified the next number
on Mersenne's and Regius' lists, 231-1, was prime.  After another
century, in 1876, Lucas
verified 2127-1 was also prime.  Seven years later Pervouchine
showed 261-1 was prime, so Mersenne had missed this one.  In the
early 1900's Powers showed that Mersenne had also missed the primes 289-1
and 2107-1.  Finally, by 1947 Mersenne's range, n < 
258, had been completely checked and it was determined that the correct list is:
n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107 and 127.

See the table of known Mersenne primes below.

2. Perfect Numbers and a Few Theorems


Many ancient cultures were concerned with the relationship of a number with the
sum of its divisors, often giving mystic interpretations.  Here we are concerned
only with one such relationship:
Definition: A positive integer n is called a perfect
  number
 if it is equal to the sum of all of its positive divisors, excluding
  n itself.

For example, 6 is the first perfect number because 6=1+2+3.  The next is 28=1+2+4+7+14. 
The next two are 496 and 8128. These four were all known before the time of Christ. 
Look at these numbers in the following partially factored form:
2.3, 4.7, 16.31, 64.127.

Do you notice they all have the same form 2n-1(2n-1)
(for n = 2, 3, 5, and 7 respectively)?  And that in each case 2n-1
was a Mersenne prime?  In fact it is easy to show the following theorems:
Theorem One:  k is an even perfect
  number if and only if it has the form 2n-1(2n-1)
  and 2n-1 is prime. [[url=../notes/proofs/EvenPerfect.html]Proof.[/url]]
 

Theorem Two:  If 2n-1 is prime, then so is n.
[Proof.]


So the search for Mersennes is also the search for even perfect numbers!

You may have also noticed that the perfect numbers listed above (6, 28, 496,
  8128) all end with either the digit 6 or the digit 8--this is also very easy
  to prove (but no, they do not continue to alternate 6, 8, 6, 8,...).  If
  you like that digit pattern, look at the first four perfect numbers in binary:

110
11100
111110000
1111111000000

(The binary digit pattern is a consequence of Theorem One.)  It is not known whether or not there is an odd perfect number, but
if there is one it is big!  This is probably the oldest unsolved problem
in all of mathematics.

When checking to see if a Mersenne number is prime, we usually first look for
  any small divisors.  The following theorem of Euler and Fermat is very
  useful in this regard.

Theorem Three:  Let p and q be primes. If q 
  divides Mp = 2p-1, then
 
q = +/-1 (mod 8)     and    
    q = 2kp + 1

  for some integer k. [Proof.]

Finally, we offer the following for your perusal:
Theorem Four:  Let p = 3 (mod 4) be prime. 2p+1
   is also prime if and only if 2p+1 divides Mp. [Proof].

Theorem Five:  If you sum the digits of any even perfect number
   (except 6), then sum the digits of the resulting number, and repeat this process
   until you get a single digit, that digit will be one. [Proof.]

 3. Table of Known Mersenne primes


Let M(p) = 2p-1 and P(p) = 2p-1(2p-1). 
The list of all known primes p for which M(p) is a Mersenne prime 
(therefore P(p) is a perfect number) follows:

 


 
    bgcolor=lightblue> 
     

     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     

   
     
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
     
   
	
     
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
     
   
     
     
     
     
     
     
     
     
   
   
     
     
     
     
     
     
     
   
   
     
     
     
     
     
     
     
   
   
     
     
     
     
     
     
     
   
   
     
     
     
     
     
     
     
   
   
     
     
     
     
     
     
     
   
 
##p

        (exponent)
digits

        in Mp
digits

        in Pp
yeardiscoverernotes
1 2 1 1-------- 
2 3 1 2-------- 
3 5 2 3-------- 
4 7 3 4-------- 
5 13 4 8 1456 anonymous 
6 17 6 10 1588 Cataldi 
7 19 6 12 1588 Cataldi 
831 10 19 1772 Euler 
961 19 37 1883 Pervushin 
10 89 27 54 1911 Powers 
11 107 33 65 1914 Powersnote
12 127 39 77 1876 Lucas 
13 521 157 314 1952 Robinson 
14 607 183 366 1952 Robinson 
15 1279 386 770 1952 Robinson 
16 2203 664 1327 1952 Robinson 
17 2281 687 1373 1952 Robinson 
18 3217 969 1937 1957 Riesel 
19 4253 1281 2561 1961 Hurwitz 
20 4423 1332 2663 1961 Hurwitz 
21 9689 2917 5834 1963 Gillies 
22 9941 2993 5985 1963 Gillies 
23 11213 3376 6751 1963 Gillies  
24 19937 6002 12003 1971 Tuckerman[Tuckerman71]
25 21701 6533 13066 1978 Noll & Nickel[NN80]
26 23209 6987 13973 1979 Noll"
27 44497 13395 26790 1979 Nelson & Slowinski[Slowinski79]
28 86243 25962 51924 1982 Slowinski[Ewing83]
29 110503 33265 66530 1988 Colquitt & Welsh[CW91]
30 132049 39751 79502 1983 Slowinski 
31 216091 65050 130100 1985 Slowinski 
32 756839 227832 455663 1992 Slowinski & Gage et al. ([url=../notes/756839.html]web
      page[/url])
33 859433 258716 517430 1994 Slowinski & Gage 
34 1257787 378632 757263 1996 Slowinski & Gage(web page)
35 1398269 420921 841842 1996 Armengaud, Woltman,
       
 et al. (GIMPS)
(web page)
36 2976221 8959321791864 1997Spence, Woltman,

        et al. (GIMPS)
(web page)
37 3021377 9095261819050 1998Clarkson, Woltman, Kurowski

        et al. (GIMPS, PrimeNet)
(web page)
38 6972593 20989604197919 1999Hajratwala,
        Woltman, Kurowski

        et al. (GIMPS, PrimeNet)
(web page)
39 13466917 40539468107892 2001Cameron, Woltman,
        Kurowski

        et al. (GIMPS, PrimeNet)
(web page)
40 20996011 632043012640858 2003Shafer,
        Woltman, Kurowski

        et al. (GIMPS, PrimeNet)
(web page)
41 24036583
 7235733
14471465
 2004Findley,
        Woltman, Kurowski

        et al. (GIMPS, PrimeNet)
(web page)
42 25964951
 7816230
15632458
 2005Nowak,
         Woltman, Kurowski

      et al. (GIMPS, PrimeNet)
(web page)
?? 30402457
 9152052
18304103
 2005
Cooper,
Boone,
Woltman,
         Kurowski

      et al. (GIMPS, PrimeNet)
(web page)
??325826579808358196167142006Cooper, Boone,
        Woltman, Kurowski

et al. (GIMPS, PrimeNet)
(web page)
??3715666711185272223705432008Elvenich, Woltman,  Kurowski
 
      et al. (GIMPS, PrimeNet)
(web page)
?? 42643801 12837064
 
     
25674127
2009 Strindmo, Woltman,  Kurowski

et al. (GIMPS, PrimeNet)
(web page)
??4311260912978189259563772008 Smith, Woltman,  Kurowski

        et al. (GIMPS, PrimeNet)
(web page)
??5788516117425170348503392013Cooper, Woltman, Kurowski

et al. (GIMPS, PrimeNet)
(web page)


 We put question marks instead of a number for the the last of the Mersenne
  primes because it will not be known if there are other Mersenne's in between
  these until a check and double check has been completed by GIMPS.  See
  the GIMPS Status Page for more information. 
  Not all smaller exponents have been tested.

4. The Lucas-Lehmer Test and Recent History


Mersenne primes (and therefore even perfect numbers) are
found using the following theorem:
Lucas-Lehmer Test:  For p an odd prime, the Mersenne
  number 2p-1 is prime if and only if 2p-1
  divides S(p-1) where S(n+1) = S(n)2-2, and S(1)
  = 4. [Proof.]

(It is also possible to start with S(1)=10 and certain other values depending
on p.)  In pseudo-code this test is:
 
 
Lucas_Lehmer_Test(p):
  s := 4;
  for i from 3 to p do s := s2-2 mod 2p-1;
  if s == 0 then
    2p-1 is prime
  else
    2p-1 is composite;


The theory for this test was initiated by Lucas
in the late 1870's and then made into this simple test about 1930 by Lehmer. The
sequence S(n) is computed modulo 2p-1 to save time. 
This test is ideal for binary computers because the division by 2p-1
(in binary) can be done using rotation and addition only.  (See the pages on proving primality for more information
of proving numbers are prime.)

In 1811 Peter
  Barlow wrote in his text Theory of Numbers that 230(231-1)
  "is the greatest [perfect number] that will be discovered; for as they are merely
  curious, without being useful, it is not likely that any person will attempt
  to find one beyond it."  I wonder what he would have made of the first
  attempts to climb Mount Everest, to run faster miles, or to jump a longer broad
  jump--other tasks that are curious but not useful.  Obviously no one in
  the late 1800's had any idea of the power of modern computers.  What might
  we know about the machines of 50 years from now?  (See also "Why
  find big primes?")

 After the 23rd Mersenne prime was
  found at the University of Illinois, the mathematics department was so proud
  that the chair of their department, Dr. Bateman, had their postage meter changed
  to stamp "211213-1 is prime" on each envelope.  This was used
  until the four color theorem was proved in 1976. (In 1985 Dr. Bateman printed
  several copies of the earlier imprint--the image on the left is from one of
  these.)

The 25th and 26th Mersenne primes were found by high-school students Laura
  Nickel and Landon Curt Noll, who, though
  they had little understanding of the mathematics involved, used Lucas' simple
  test on the local university's mainframe (CSUH's CDC 174) to find the next two
  primes.  Their discovery of the first prime made the national television
  news and the front page of the New York times.  They went their separate
  ways after finding the first prime, but Noll kept the program running to find
  the second--so Noll claims complete ownership.  Noll searched later, and
  though he never found another Mersenne prime, he is one of a team that holds
  the record for the largest non-Mersenne prime.  He currently works for
  Silicon Graphics.

Slowinski, who works for Cray computers,
  has written a version of the Lucas test that he has convinced many Cray labs
  around the world to run in their spare time (time that would be lost otherwise). 
  He had to delay announcing one of his prime records until he got permission
  to begin looking for it.  Slowinski's search for record primes is "not
  so organized as you would suppose" (his words), as he does not search systematically. 
  In fact, looking at the table of Mersennes you see he missed the 29th prime
  but found the 30th and 31st.  Colquitt & Welsh worked to fill in the
  gaps and found the 29th.

Enter George Woltman, an excellent
  programmer and organizer.  Starting in late 1995 he gathered up the disparate
  databases and combined them into one. Then he placed this database, and a free,
  highly optimized program for search for Mersennes onto the web.  This began
  GIMPS (the Great Internet Mersenne
  Prime Search) which: has now found the largest known Mersennes, has scanned
  all of the regions left unexplored between the previous record primes, combines
  the efforts of dozens of experts and thousands of
  amateurs, and which offers free
  software for most computer platforms.

In late 1997 Scott Kurowski (and
  others) established PrimeNet to automate
  the selection of ranges and reporting of results for GIMPS, now almost anyone
  can join this search!

5. Conjectures and Unsolved Problems



 
 Is there an odd perfect number? 

 
 We know that all even perfect numbers are a Mersenne prime times a power
     of two (Theorem One above), but what about odd perfect
      numbers?  If there is one, then it is a perfect square times an odd
      power  of a single prime; it is divisible by at least eight primes and
      has at least  75 prime factors (not necessarily distinct [[url=../references/refs.cgi/Hare2006]Hare2006[/url]],
      [[url=../references/refs.cgi/Hare2005]Hare2005[/url]],
      [IS2003]) with at least 9 distinct [[url=../references/refs.cgi/Nielsen2006]Nielsen2006[/url]];
      it has at least 300 decimal digits [BCR91]; and it has a prime divisor greater
        that 1020 [Cohen87].  For more information
         see [Ribenboim95] or [Guy94].

 

 
 Are there infinitely many Mersenne primes? 

 
 Equivalently we could ask: Are there infinitely many even perfect numbers? 
    The answer is probably yes (because the harmonic series diverges).

 

 
 Are there infinitely many Mersenne composites? 

 
 Euler showed:
   
Theorem:  If  k>1 and 
      p=4k+3  is prime, then 2p+1 is prime if and only
      if 2p = 1 (mod 2p+1).

  So if p=4k+3 and 2p+1 are prime then the Mersenne number
  2p-1 is composite (and it seems reasonable to conjecture that
  there are infinitely many primes pairs such p, 2p+1).

 

 
 The New Mersenne Conjecture:

 
 Bateman, Selfridge and Wagstaff have conjectured [BSW89]
    the following.
 
Let p be any odd natural number. If two of the following
    conditions hold, then so does the third:
   

         
  1.  p = 2k+/-1   or   p 
            = 4k+/-3

  2.      
  3.  2p-1 is a prime (obviously a Mersenne prime)

  4.      
  5.  (2p+1)/3 is a prime.

  6.    

 

  Notice how this conjecture is related to the theorem in the previous conjecture. 
    See our page on [url=NewMersenneConjecture.html]The New Mersenne Conjecture[/url]
    for status information.

 

 Is every Mersenne number 2p-1 square free?

 
 This falls more in the category of an open question (to which we do not
    know the answer), rather than a conjecture (which we guess is true) [Guy94
    section A3].  It is [url=../notes/proofs/SquareMerDiv.html]easy
    to show[/url] that if the square of a prime p divides a Mersenne, then
    p is a Wieferich
    prime
 and these are rare!  Only two are known below 4,000,000,000,000
    and neither of these squared divide a Mersenne.  

 

 
 Let C0 = 2, then let C1 = 2C0-1,
    C2 = 2C1-1, C3 = 2C2-1,
    ... Are these all prime?
 

 
 According to Dickson [Dickson
    v1p22] Catalan responded in 1876 to Lucas' stating 2127-1 (C4)
    is prime with this sequence.  These numbers grow very quickly:
 
 
   
       
       
       
     
       
       
       
     
       
       
       
     
       
       
       
     
       
       
       
     
       
       
       
     
   
C0 = 2(prime)
C1 = 3(prime)
C2 = 7(prime)
C3 = 127(prime)
C4 = 170141183460469231731687303715884105727(prime)
C5 > 1051217599719369681875006054625051616349(is C5 prime ?)

 

  It seems very unlikely that C5 (or many of the larger terms) would
   be prime, so this is no doubt another example of Guy's strong law of small
    numbers.  Notice that if there is even one composite term in this
    sequences,  then by theorem one all of the following
    terms are composite. 
  (Landon Curt Noll tells
  me he has used his  program calc 
  to verify that C5 has no prime divisors below 5*1051.)

 
 
 
Are there more double-Mersenne primes? 
 
Another common early misconception was that if n=Mp 
    is prime, then so is Mn; lets call this number MMp 
    (a "double-Mersenne").  Indeed each of the first four such numbers are
    prime:
   
 MM2  =  23-1   =  7,

      MM3  =  27-1   =  127,

      MM5  =  231-1  =  2147483647,

      MM7  =  2127-1 =  170141183460469231731687303715884105727.
   

    However, the next four (MM13 MM17 MM19 and
    MM31) all have known factors--so are composite.  Are there
    any more primes in this sequence?  Probably not, but it remains an open
    question.  Tony Forbes is leading a
    project to search for a factor of the next term
: MM61, you
    might want to join and help!
   

Notice the Catalan sequence above is a subsequence of
      this one.



















 
 

--
※ 作者: ott 時間: 2013-02-08 17:17:12
※ 編輯: ott 時間: 2018-11-01 17:28:59
※ 看板: ott 文章推薦值: 0 目前人氣: 0 累積人氣: 94 
分享網址: 複製 已複製
guest
x)推文 r)回覆 e)編輯 d)刪除 M)收藏 ^x)轉錄 同主題: =)首篇 [)上篇 ])下篇