顯示廣告
隱藏 ✕
※ 本文為 terievv 轉寄自 ptt.cc 更新時間: 2012-08-24 12:14:38
看板 DAIC
作者 plover (+oo)
標題 Re: [問題] 請問1+1=2是如何證出來的
時間 Sat Jan 11 17:27:47 2003


※ 引述《bigjuto (用過的都說棒)》之銘言:
:  是用皮亞諾公設嗎...
:  該如何去證?

Author: Pinter


We will proceed as follows: we define

        0 = {}.

In order to define "1," we must fix a set with exactly one element;
thus

        1 = {0}.

Continuing in fashion, we define

        2 = {0,1},
        3 = {0,1,2},
        4 = {0,1,2,3}, etc.

The reader should note that 0 = {}, 1 = {{}}, 2 = {{},{{}}}, etc.
Our natural numbers are constructions beginning with the empty set.

The preceding definitions can be restarted, a little more precisely,
as follows.  If A is a set, we define the successor of A to be the set
A^+, given by

        A^+ = A ∪ {A}.

Thus, A^+ is obtained by adjoining to A exactly one new element,
namely the element A.  Now we define

        0 = {},
        1 = 0^+,
        2 = 1^+,
        3 = 2^+, etc.

現在問題來了, 有一個 set 是包括所有 natural numbers 的嗎 ? (甚至問
一個 class). 這邊先定義一個名詞, 接著在引 A9, 我們就可以造出一個 set
包括所有的 natural numbers.

A set A is called a successor set if it has the following properties:

 i) {} [- A.
ii) If X [- A, then X^+ [- A.

It is clear that any successor set necessarily includes all the natural
numbers.  Motivated bt this observation, we introduce the following
important axiom.

A9 (Axiom of Infinity).  There exist a successor set.

As we have noted, every successor set includes all the natural numbers;
thus it would make sense to define the "set of the natural numbera" to
be the smallest successor set.  Now it is easy to verify that any
intersection of successor sets is a successor set; in particular, the
intersection of all the successor sets is a successor set (it is obviously
the smallest successor set).  Thus, we are led naturally to the following
definition.


6.1 Definition  By the set of the natural numbers we mean the intersection
of all the successor sets.  The set of the natural numbers is designated by
the symbol ω; every element of ω is called a natural number.


6.2 Theorem  For each n [- ω, n^+≠0.
Proof. By definition, n^+ = n ∪ {n}; thus n [- n^+ for each natural
number n; but 0 is the empty set, hence 0 cannot be n^+ for any n.


6.3 Theorem (Mathematical Induction).  Let X be a subset of ω; suppose
X has the following properties:

 i) 0 [- X.
ii) If n [- X, then n^+ [- X.

Then X = ω.

Proof. Conditions (i) and (ii) imply that X is a successor set.  By 6.1
ω is a subset of every successor set; thus ω 包含於 X. But X 包含於 ω;
so X = ω.


6.4 Lemma  Let m and natural numbers; if m [- n^+, then m [- n or m = n.
Proof. By definition, n^+ = n ∪ {n}; thus, if m [- n^+, then m [- n
or m [- {n}; but {n} is a singleton, so m [- {n} iff m = n.


6.5 Definition  A set A is called transitive if, for such
x [- A, x 包含於 A.


6.6 Lemma  Every natural number is a transitive set.
Proof. Let X be the set of all the elements of ω which
are transitive sets; we will prove, using mathematical induction
(Theorem 6.3), that X = ω; it will follow that every natural
number is a transitive set.

 i) 0 [- X, for if 0 were not a transitive set, this would mean
    that 存在 y [- 0 such that y is not a subset of 0; but this is
    absurd, since 0 = {}.
ii) Now suppose that n [- X; we will show that n^+ is a transitive
    set; that is, assuming that n is a transitive set, we will show
    that n^+ is a transitive set.  Let m [- n^+; by 6.4 m [- n
    or m = n. If m [- n, then (because n is transitive) m 包含於 n;
    but n 包含於 n^+, so m 包含於 n^+. If n = m, then (because n
    包含於 n^+) m 包含於 n^+; thus in either case, m 包含於 n^+, so
    n^+ [- X.  It folloes by 6.3 that X = ω.

6.7 Theorem  Let n and m be natural numbers.  If n^+ = m^+, then n = m.
Proof. Suppose n^+ = m^+; now n [- n^+, hence n [- m^+;
thus by 6.4 n [- m or n = m.  By the very same argument,
m [- n or m = n. If n = m, the theorem is proved. Now
suppose n≠m; then n [- m and m [- n.  Thus by 6.5 and 6.6,
n 包含於 m and m 包含於 n, hence n = m.


6.8 Recursion Theorem
Let A be a set, c a fixed element of A, and f a function from
A to A.  Then there exists a unique function γ: ω -> A such
that

 I. γ(0) = c, and
II. γ(n^+) = f(γ(n)), 對任意的 n [- ω.

Proof. First, we will establish the existence of γ. It should
be carefully noted that γ is a set of ordered pairs which is a
function and satisfies Conditions I and II.  More specifically,
γ is a subset of ω╳A with the following four properties:

1) 對任意的 n [- ω, 存在 x [- A s.t. (n,x) [- γ.
2) If (n,x_1) [- γ and (n,x_2) [- γ, then x_1 = x_2.
3) (0,c) [- γ.
4) If (n,x) [- γ, then (n^+,f(x)) [- γ.

Properties (1) and (2) express the fact that γ is a function from
ω to A, while properties (3) and (4) are clearly equivalent to
I and II.  We will now construct a graph γ with these four properties.

Let

        Λ = { G | G 包含於 ω╳A and G satisfies (3) and (4) };

Λ is nonempty, because ω╳A [- Λ.  It is easy to see that any
intersection of elements of Λ is an element of Λ; in particular,

        γ =  ∩   G
             G[-Λ

is an element of Λ.  We proceed to show that γ is the function
we require.

By construction, γ satisfies (3) and (4), so it remains only to
show that (1) and (2) hold.

1) It will be shown by induction that domγ = ω, which clearly
implies (1).  By (3), (0,c) [- γ; now suppose n [- domγ.  Then
存在 x [- A 使得 (n,x) [-γ; by (4), then, (n^+,f(x)) [- γ,
so n^+ [- domγ. Thus, by Theorem 6.3 domγ = ω.

2) Let

        N = { n [- ω | (n,x) [- γ for no more than one x [- A }.

It will be shown by induction that N = ω.  To prove that 0 [- N,
we first assume the contrary; that is, we assume that (0,c) [- γ
and (0,d) [- γ where c≠d.  Let γ^* = γ - {(0,d)}; certainly
γ^* satisfies (3); to show that γ^* satisfies (4), suppose that
(n,x) [- γ^*. Then (n,x) [- γ, so (n^+,f(x)) [- γ; but n^+≠0
(Theorem 6.2), so (n^+,f(x))≠(0,d), and consequently (n^+,f(x)) [-
γ^*.  We conclude that γ^* satisfies (4), so γ^* [- Λ; but γ is
the intersection of all elements of Λ, so γ 包含於 γ^*. This is
impossible, hence 0 [- N.  Next, we assume that n [- N and prove
that n^+ [- N.  To do so, we first assume the contrary -- that is,
we suppose that (n,x) [- γ, (n^+,f(x)) [- γ, and (n^+,u) [- γ
where u≠f(x). Let γ^。 = γ - {(n^+,u)}; γ^。 satisfies (3) because
(n^+,u)≠(0,c) (indeed, n^+≠0 by Theorem 6.2).  To show that γ^。
satisfies (4), suppose (m,v) [- γ^。; then (m,v) [- γ, so
(m^+,f(v)) [- γ.  Now we consider two cases, according as
(a) m^+≠n^+ or (b) m^+ = n^+.

a) m^+≠n^+.  Then (m^+,f(v))≠(n^+,u), so (m^+,f(v)) [- γ^。.
b) m^+ = n^+.  Then m = n by 6.7, so (m,v) = (n,v); but n [- N,
so (n,x) [- γ for no more than one x [- A; it follows that v = x,
and so

        (m^+,f(v)) = (n^+,f(x)) [- γ^。.

Thus, in either case (a) or (b), (m^+,f(v)) [- γ^。, thus, γ^。
satisfies Condition (4), so γ^。[- Λ.  But γ is the intersection
of all the elements of Λ, so γ 包含於 γ^。; this is impossible,
so we conclude that n^+ [- N. Thus N = ω.
Finally, we will prove that γ is unique.  Let γ and γ' be functions,
from ω to A which satisfy I and II.  We will prove by induction that
γ = γ'. Let

        M = { n [- ω | γ(n) = γ'(n) }.

Now γ(0) = c = γ'(0), so 0 [- M; next, suppose that n [- M. Then

        γ(n^+) = f(γ(n)) = f(γ'(n)) = γ'(n^+),

hence n^+ [- M.


If m is a natural number, the recurion theorem guarantees the
existence of a unique function γ_m: ω -> ω defined by the
two Conditions

 I. γ_m(0)=m,
II. γ_m(n^+) = [γ_m(n)]^+, 對任意的 n [- ω.

Addition of natural numbers is now defined as follows:

        m + n = γ_m(n) for all m, n [- ω.


6.10    m + 0 = m,
        m + n^+ = (m + n)^+.

6.11 Lemma n^+ = 1 + n, where 1 is defined to be 0^+

Proof. This can be proven by induction on n. If n = 0,
then we have

        0^+ = 1 = 1 + 0

(this last equality follows from 6.10), hence the lemma holds
for n = 0.  Now, assuming the lemma is true for n, let us show
that it holds for n^+:

        1 + n^+ = (1 + n)^+    by 6.10
                = (n^+)^+      by the hypothesis of induction.


把 n = 1 並且注意 2 = 1^+, 故 1 + 1 = 2.


--
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 140.112.247.33
Zing119:哇靠好屌                                        218.166.83.69 06/28
ckclark:3銀                                             61.229.69.217 08/28
woomie:緊握小根根3F 01/10 17:57
woomie:緊握小根根
woomie:緊握小根根
woomie:緊握小根根
woomie:緊握小根根
woomie:緊握小根根
woomie:緊握小根根
woomie:緊握小根根
llewxam:11F 04/24 18:08
nicess:2000gandam@yahoo.com.tw12F 05/16 00:29
revivalworld:朝聖13F 03/30 18:46
wyob:借轉14F 07/18 07:41
tsecpr:test15F 09/07 00:05
Fxxxz:八卦板來朝聖 看到第四頁以後就笑了...16F 09/11 02:07
zsxa1234:XD17F 09/11 09:13
sebaceous:ㄎㄎ18F 11/21 18:01
paggei      :O_O19F 09/08 16:39
ptlove1222  :90902Bbbsai20F 09/19 14:23
myhole      :來朝聖21F 11/05 03:13
ntust661    :朝聖22F 11/05 03:19
giveme520   :朝聖 跨謀23F 11/05 08:08
Geffen1     :洗咧攻殺毀24F 11/05 10:25
tomshiou    :朝聖25F 11/21 19:39
e1q3z9c7    :跨隆謀26F 11/21 19:40
toya123     :來朝聖  原來1+1=2是這麼複雜的式子27F 11/21 19:44
piliboy     :朝聖28F 11/21 19:56
KI780804    :朝聖    請問甚麼是一 甚麼是二?  有必要那麼複雜嗎29F 11/21 20:01
pl726       :朝聖30F 11/21 20:12
enunion     :這不會有循環證法問題嗎???31F 11/21 21:28
chengwaye   :.......32F 01/10 17:45
eggsu       :-]這個屬於符號看得好累33F 04/07 23:40
eggsu       :要是x-]X可以改成x in X,會容易得多吧!
cj6u40      :2010/05/1035F 05/10 21:12
chenlytw    :2010 / 05 / 1236F 05/12 15:12
sorkayi     :2010/05/2737F 05/27 13:11
head109     :2010.7/838F 07/08 15:14
KIRA1943    :朝聖39F 07/08 15:18
cheng135    :2010/07/0840F 07/08 15:18
majungyi    :真可怕...41F 07/08 15:20
alwaysOGC   :朝聖 2010/07/0842F 07/08 15:22
jasonkau    :朝聖 2010/07/08       另外緊握小根根是什麼東西= =43F 07/08 15:23
Fewer       :2010/7/844F 07/08 15:41
pio298      :朝聖 2010/07/0845F 07/08 15:42
daliao626   :朝聖 2010/07/0846F 07/08 16:14
keenth      :朝聖 2010/07/08       另外緊握小根根是什麼東西= =47F 07/08 16:19
Adamsun0306 :2010/7/848F 07/08 16:22
ruemann     :朝聖 2010/07/0849F 07/08 16:26
hochengyuan :朝聖 2010/07/0850F 07/08 16:32
johnson127  :朝聖 2010/07/0851F 07/08 16:44
jeff87821   :朝聖 2010/7/0852F 07/08 17:14
YSimpson    :有必要這麼累嗎?53F 07/08 19:56
eva577663   :朝聖 2010/08/1254F 08/12 22:14
romsqq      :2010/09/0355F 09/03 11:18
wuling510665:2010/09/1056F 09/10 18:39
xavier13540 :原po真神人也57F 09/19 13:01
wind90605   :朝聖 2010/10/01       另外握緊小根根是什麼東西= =58F 10/01 14:15
darren8221  :朝聖 2010/10/0959F 10/09 23:50
craig100    :朝聖 2010/10/10      話說這樣證好辛苦.....60F 10/10 23:46
turtleqqq   :朝聖~ 有沒有人可以貼費馬~ 9X頁的圖文證明~XD61F 10/15 14:18
red0210     :朝聖 2010/10/17       另外緊握小根根是什麼東西= =62F 10/17 13:20
worshipA    :緊握小根根63F 10/21 22:23
likeshit    :朝聖 2010/11/1364F 11/13 02:18
peter50505  :朝聖 2010/11/1365F 11/13 11:49
Scorpliu    :朝聖 2010/11/1366F 11/13 13:56
victorway   :朝聖2010/11/1367F 11/13 15:37
liufon      :朝聖 2010/11/1368F 11/13 23:27
kdogin1548  :朝聖 2010/11/1469F 11/14 14:13
tsoahans    :-----------------本篇文章值3元-------------------70F 11/17 23:00
x03692001   :朝聖  2011/01/1071F 01/10 16:13
b95236      :朝聖 2011/01/22 超強....72F 01/22 00:08
psplay 
psplay      :朝聖 2011/01/2273F 01/22 00:09
ByronX      :朝聖 2011/01/22 還好我工學院會用就好~~74F 01/22 00:12
snowyba     :朝聖 2011/01/2275F 01/22 00:18
j003862001  :朝聖 2011/01/2276F 01/22 00:33
glacialfire :朝聖 2011/01/22 曾聽過我數學系朋友說過 果然是真的77F 01/22 01:28
latria      :朝聖 2011/02/0978F 02/09 20:34
ohjia       :朝聖 2011/2/1779F 02/17 23:49
heavenmusic :朝聖 2011/02/1780F 02/17 23:50
nottestella :朝聖 2011/03/0381F 03/03 14:21
Marcantonio :朝聖 2011/03/31 要是我唸數學系會崩潰吧82F 03/31 13:31
cckk3333    :朝聖 2011/04/1783F 04/17 00:09
Hodou       :朝聖 2011/05/01 想知道"緊握小根根"是什麼東西+184F 05/01 06:59
samok       :朝聖 2011/05/05 太強了QQ85F 05/05 22:00
pkla0120    :朝聖 2011/06/1886F 06/18 20:03
robertchun  :朝聖 2011              這啥鬼....87F 06/18 20:04
skywidth    :朝聖 2011/06/18  幹!! 真強88F 06/18 20:05
Howard61313 :朝聖 2011/06/1889F 06/18 20:05
Rex1009     :朝聖 2011/06/18 緊握小根根到底是什麼90F 06/18 20:10
luming      :朝聖 2011/06/1891F 06/18 20:10
gfneo       :朝聖 2011/06/18  我回去做實驗就好......92F 06/18 20:10
jayleeabc   :朝聖 2011/06/1893F 06/18 20:11
CCC1231321  :朝聖 2011/06/18 緊握小根根94F 06/18 20:20
gp03dan     :朝聖 2011/06/18 緊握小根根95F 06/18 20:27
mouse711217 :朝聖 2011/06/18 完全看不懂96F 06/18 20:58
larsatic    :朝聖 2011/06/18 直接END97F 06/18 21:58
jlcsn       :朝聖 2011/06/18 感覺我念數學系也會崩潰orz98F 06/18 22:44
sseug2      :朝聖 2011/06/2499F 06/24 15:11
alfadick    :潮吹 2011/07/21100F 07/21 17:17
rifurdoma   :朝聖 2011/09/06101F 09/06 12:14
chy1010     :朝聖 2011/09/07 .... 學長名字裡面有根102F 09/07 13:40
tanaka0826  :朝聖 2011/09/08  還好我沒讀數學系103F 09/08 12:27
askaleroux  :朝聖 2011/10/02  我直接end了104F 10/02 19:01
rugomen     :朝聖 2011/10/05 pm 11:34 ....105F 10/05 23:34
littlemings :朝聖 2011/10/05106F 10/05 23:43
hey5566     :朝聖 2011/10/05107F 10/05 23:46
ibook0102   :朝聖 2011/10/05 PM 11:46108F 10/05 23:46
ps0grst     :朝聖 2011/10/15109F 10/15 04:11
KKlin813    :朝聖 2011/10/22110F 10/22 00:46
xgcj        :朝聖 2011/10/27111F 10/27 09:06
fishweeping :朝聖 2011/11/09112F 11/09 13:14
TRAP        :朝聖 2011/12/06113F 12/06 20:07
friendever  :朝聖 2011/12/13114F 12/13 00:45
cccooler    :朝聖                                        2011/115F 12/13 00:58
PhySeraph   :朝聖 2011/12/13116F 12/13 01:22
ds112115    :朝聖 2011/12/13117F 12/13 03:08
ptlove1222  :朝聖 2011/12/13 窩生ㄖ118F 12/13 13:08
tsoahans    :樓上生日快樂119F 12/24 23:19
Luluandlulu :朝聖 2012/01/17 XD120F 01/17 04:00
oyrac2      :朝聖 2012/02/03121F 02/03 19:46
peterqlin   :朝聖 2012/02/09122F 02/09 20:05
sh1357      :朝聖 2012/03/02123F 03/02 16:56
a187        :朝聖 2012/12/10124F 03/07 01:00
theeht      :朝聖 3012/02/30125F 03/07 01:43
andy810625  :朝聖 2012/03/07126F 03/07 18:43
LSC112233   :朝聖 2012/03/28127F 03/28 15:47
turtleqqq   :會成功嗎!?128F 04/01 07:25
theye       :朝聖 2012/04/26 01:21129F 04/26 01:21
fox49er     :朝聖130F 04/29 00:16
MSNboy      :將近十年的文章= =131F 04/29 00:16
Erict       :朝聖 2012/04/29132F 04/29 00:17
qDaniel     :八卦版在吵 來朝聖推133F 04/29 00:27
kevin21y    :朝聖 2012/04/29134F 04/29 00:37
general     :朝聖 2012/04/29135F 04/29 01:10
r81402      :朝聖 2012/04/29   完全看不懂...136F 04/29 01:13
smelly      :朝聖 2012/4/29137F 04/29 01:31
renmax      :朝聖 2012.04.29       另外握緊小根根是什麼東西= =138F 04/29 04:26
batista5566 :朝聖 2012/04/29139F 04/29 12:48
maryma      :朝聖 2012/04/30140F 04/30 03:55
panruru1224 :朝聖 2012/07/25141F 07/25 17:07

--
※ 看板: terievv 文章推薦值: 0 目前人氣: 0 累積人氣: 1209 
分享網址: 複製 已複製
1樓 時間: 2012-08-24 14:11:01 (台灣)
  08-24 14:11 TW
朝聖
r)回覆 e)編輯 d)刪除 M)收藏 ^x)轉錄 同主題: =)首篇 [)上篇 ])下篇